< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Extending the Hill Cipher Two secure modifications of the classic cipher

John Chase Matt Davis

Cryptography 625.480

December 2, 2010 / Final Paper Presentation

TF Hill Cipher

Outline

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣・のへ⊙

Introduction

Hill Cipher

- Matrix encryption scheme introduced by Lester Hill in a 1929 paper.
- Machine built, but never used.
- Encryption scheme

 $Y = XK \pmod{m}$

• Easily succumbs to known-plaintext attack. The key is recovered as

$$K = X^{-1}Y$$

• A dozen secure modifications. We'll look at two.

・ コット (雪) (小田) (コット 日)

Introduction

Hill Cipher

- Matrix encryption scheme introduced by Lester Hill in a 1929 paper.
- Machine built, but never used.
- Encryption scheme

 $Y = XK \pmod{m}$

 Easily succumbs to known-plaintext attack. The key is recovered as

$$K = X^{-1}Y$$

• A dozen secure modifications. We'll look at two.

・ロン ・ 雪 と ・ ヨ と ・ ヨ ・

Introduction

Hill Cipher

- Matrix encryption scheme introduced by Lester Hill in a 1929 paper.
- Machine built, but never used.
- Encryption scheme

 $Y = XK \pmod{m}$

 Easily succumbs to known-plaintext attack. The key is recovered as

$$K = X^{-1}Y$$

• A dozen secure modifications. We'll look at two.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Introduction

Hill Cipher

- Matrix encryption scheme introduced by Lester Hill in a 1929 paper.
- Machine built, but never used.
- Encryption scheme

 $Y = XK \pmod{m}$

 Easily succumbs to known-plaintext attack. The key is recovered as

$$K = X^{-1}Y$$

• A dozen secure modifications. We'll look at two.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Introduction

Hill Cipher

- Matrix encryption scheme introduced by Lester Hill in a 1929 paper.
- Machine built, but never used.
- Encryption scheme

 $Y = XK \pmod{m}$

 Easily succumbs to known-plaintext attack. The key is recovered as

$$K = X^{-1} Y$$

• A dozen secure modifications. We'll look at two.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

TF Hill Cipher

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

SVK Hill Cipher

Sastry, Varanasi, and Kumar (2010).

Key Features

- Uses a pair of key matrices (multiplied on the left and right) and a permutation scheme.
- Encoded plaintext must be loaded into square matrices having the same size as the keys.
- Multiple iterations.

TF Hill Cipher

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

SVK Hill Cipher

Sastry, Varanasi, and Kumar (2010).

Key Features

- Uses a pair of key matrices (multiplied on the left and right) and a permutation scheme.
- Encoded plaintext must be loaded into square matrices having the same size as the keys.
- Multiple iterations.

TF Hill Cipher

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

SVK Hill Cipher

Sastry, Varanasi, and Kumar (2010).

Key Features

- Uses a pair of key matrices (multiplied on the left and right) and a permutation scheme.
- Encoded plaintext must be loaded into square matrices having the same size as the keys.

Multiple iterations.

TF Hill Cipher

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

SVK Hill Cipher

Sastry, Varanasi, and Kumar (2010).

Key Features

- Uses a pair of key matrices (multiplied on the left and right) and a permutation scheme.
- Encoded plaintext must be loaded into square matrices having the same size as the keys.
- Multiple iterations.

Encryption Example

- Suppose Alice wants to send the message "Abbot=A. Square" to Bob.
- Plaintext is converted to decimal numbers between 0 and 255 using the EBCDIC code.
- We use a block size of 4.
- Encoded plaintext is placed into a 4 × 4 matrix.

・ロト・西ト・西ト・西ト・日・ つんぐ

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Encryption Example

- Suppose Alice wants to send the message "Abbot=A. Square" to Bob.
- Plaintext is converted to decimal numbers between 0 and 255 using the EBCDIC code.
- We use a block size of 4.
- Encoded plaintext is placed into a 4 × 4 matrix.

$$P = \begin{bmatrix} 193 & 130 & 130 & 150 \\ 163 & 163 & 126 & 193 \\ 175 & 64 & 226 & 152 \\ 164 & 129 & 153 & 133 \end{bmatrix}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Encryption Example

- Suppose Alice wants to send the message "Abbot=A. Square" to Bob.
- Plaintext is converted to decimal numbers between 0 and 255 using the EBCDIC code.
- We use a block size of 4.
- Encoded plaintext is placed into a 4 × 4 matrix.

$$P = \begin{bmatrix} 193 & 130 & 130 & 150 \\ 163 & 163 & 126 & 193 \\ 175 & 64 & 226 & 152 \\ 164 & 129 & 153 & 133 \end{bmatrix}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Encryption Example

- Suppose Alice wants to send the message "Abbot=A. Square" to Bob.
- Plaintext is converted to decimal numbers between 0 and 255 using the EBCDIC code.
- We use a block size of 4.
- Encoded plaintext is placed into a 4 × 4 matrix.

$$P = \begin{bmatrix} 193 & 130 & 130 & 150 \\ 163 & 163 & 126 & 193 \\ 175 & 64 & 226 & 152 \\ 164 & 129 & 153 & 133 \end{bmatrix}$$

Encryption Example

Since our block size is 4, Alice and Bob agree on two 4 \times 4 key matrices, K and L.

$$\mathcal{K} = \begin{bmatrix} 18 & 33 & 109 & 210 \\ 78 & 43 & 102 & 64 \\ 133 & 17 & 29 & 89 \\ 99 & 87 & 114 & 12 \end{bmatrix} \qquad \qquad \mathcal{L} = \begin{bmatrix} 19 & 74 & 20 & 103 \\ 88 & 30 & 41 & 19 \\ 211 & 201 & 136 & 87 \\ 77 & 40 & 92 & 126 \end{bmatrix}$$

Alice encrypts *P* by finding the product

$$KPL = \begin{bmatrix} 37 & 84 & 53 & 207 \\ 252 & 250 & 237 & 134 \\ 122 & 149 & 90 & 88 \\ 115 & 94 & 211 & 45 \end{bmatrix} \pmod{256}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Encryption Example

Since our block size is 4, Alice and Bob agree on two 4 \times 4 key matrices, *K* and *L*.

$$K = \begin{bmatrix} 18 & 33 & 109 & 210 \\ 78 & 43 & 102 & 64 \\ 133 & 17 & 29 & 89 \\ 99 & 87 & 114 & 12 \end{bmatrix} \qquad \qquad L = \begin{bmatrix} 19 & 74 & 20 & 103 \\ 88 & 30 & 41 & 19 \\ 211 & 201 & 136 & 87 \\ 77 & 40 & 92 & 126 \end{bmatrix}$$

Alice encrypts *P* by finding the product

$$KPL = \begin{bmatrix} 37 & 84 & 53 & 207 \\ 252 & 250 & 237 & 134 \\ 122 & 149 & 90 & 88 \\ 115 & 94 & 211 & 45 \end{bmatrix} \pmod{256}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Int	ro	4	1 of	5	5
ΠIL	10	u	JUL	IU	П

TF Hill Cipher

Encryption Example Permutation: Stage 1

Alice converts the 16 decimal entries in KPL to binary, entering them one in each row of a 16 \times 8 matrix.

	84		
		134	
			\longrightarrow

	1		1		- 1		
		- 1	- 1		- 1		- 1
1	1			1	- 1	1	- 1
1	1	- 1	1	- 1	- 1		
1	1	1	1	1		1	
1	1	- 1		- 1	- 1		- 1
1					- 1	1	
	1	- 1	1	- 1		1	
1			- 1		1		- 1
	1		1	1		1	
	1		1	- 1			
	1	- 1	- 1			- 1	- 1
	1		1	1	- 1	1	
1	1		- 1			1	- 1
		-1		- 1	- 1		

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Int	ro	a 11	oti	\cap	n
11 1 1	10	au	ou	U	

TF Hill Cipher

Encryption Example Permutation: Stage 1

Alice converts the 16 decimal entries in KPL to binary, entering them one in each row of a 16 \times 8 matrix.

	37	84	53	207]
	252	250	237	134
KFL =	122	149	90	88
	115	94	211	45

		- 1			- 1		
	1		1		- 1		
		- 1	- 1		- 1		- 1
1	1			1	- 1	- 1	- 1
1	1	- 1	1	- 1	- 1		
1	1	1	1	1		- 1	
1	1	- 1		- 1	- 1		- 1
1					- 1	- 1	
	1	- 1	1	- 1		- 1	
1			1		- 1		- 1
	1		1	1		- 1	
	1		1	- 1			
	1	1	1			- 1	- 1
	1		1	- 1	- 1	- 1	
1	1		1			1	- 1
		-1		-1	-1		- 1

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Int	ro	an	oti	\cap	n
11 1 1	10	au	ou	U	

TF Hill Cipher

Encryption Example Permutation: Stage 1

Alice converts the 16 decimal entries in KPL to binary, entering them one in each row of a 16 \times 8 matrix.

	37	84	53	207]	
KPL =	252	250	237	134	
	122	149	90	88	\rightarrow
	115	94	211	45	

	- 1		1		- 1		
		- 1	- 1		- 1		- 1
1	- 1			1	- 1	1	- 1
1	- 1	- 1	1	- 1	- 1		
1	- 1	- 1	1	1		1	
1	- 1	- 1		1	- 1		- 1
1					- 1	- 1	
	- 1	- 1	1	1		1	
1			1		- 1		- 1
	- 1		1	1		1	
	- 1		1	1			
	- 1	- 1	- 1			- 1	- 1
	- 1		1	1	- 1	1	
1	- 1		1			1	- 1
		-1		-1	-1		- 1

▲□▶▲□▶▲□▶▲□▶ □ のQ@

In	t۳	5	Ч		0	H	0	n
	u	U	u	u	C,	u	U	

TF Hill Cipher

Encryption Example Permutation: Stage 1

Alice converts the 16 decimal entries in KPL to binary, entering them one in each row of a 16 \times 8 matrix.

	37	84	53	207]	
KPL =	252	250	237	134	
	122	149	90	88	\rightarrow
	115	94	211	45	

٢0	0	1	0	0	1	0	ן1
0	1	0	1	0	1	0	0
0	0	1	1	0	1	0	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	0	0
1	1	1	1	1	0	1	0
1	1	1	0	1	1	0	1
1	0	0	0	0	1	1	0
0	1	1	1	1	0	1	0
1	0	0	1	0	1	0	1
0	1	0	1	1	0	1	0
0	1	0	1	1	0	0	0
0	1	1	1	0	0	1	1
0	1	0	1	1	1	1	0
1	1	0	1	0	0	1	1
LO	0	1	0	1	1	0	1

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

TF Hill Cipher

Encryption Example Permutation: Stage 2

Alice then permutes the binary matrix.

Before permutation:

		- 1			- 1		11
	- 1		- 1		- 1		
		1	- 1		- 1		1
1	- 1			- 1	- 1	- 1	1
1	- 1	- 1	- 1	- 1	- 1		
1	- 1	- 1	- 1	- 1		- 1	
1	- 1	- 1		- 1	- 1		1
1					- 1	- 1	
	- 1	- 1	- 1	- 1		- 1	
1			- 1		- 1		1
	- 1		- 1	- 1		- 1	
	- 1		- 1	- 1			
	- 1	- 1	- 1			- 1	1
	- 1		- 1	- 1	- 1	- 1	
1	1		1			1	1
		-1		- 1	-1		

After permutation:

		1					
1	1	1		1	1	1	1
1		1	1	1		1	
	1	1		1	1	1	1
	1		1	1	1		
	1						
	1	1	1	1	1	1	1
1	1	1				1	1
1		1	1	1			
					1	1	
1	1	1	1				1
1	1			1	1	1	
	1	1			1	1	1
1	1	1	1	1		1	1
1	1					1	
1	1			1			1

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

TF Hill Cipher

Encryption Example Permutation: Stage 2

Alice then permutes the binary matrix.

Before permutation:

۲0	0	1	0	0	1	0	11	
0	1	0	1	0	1	0	0	
0	0	1	1	0	1	0	1	
1	1	0	0	1	1	1	1	
1	1	1	1	1	1	0	0	
1	1	1	1	1	0	1	0	
1	1	1	0	1	1	0	1	
1	0	0	0	0	1	1	0	
0	1	1	1	1	0	1	0	
1	0	0	1	0	1	0	1	
0	1	0	1	1	0	1	0	
0	1	0	1	1	0	0	0	
0	1	1	1	0	0	1	1	
0	1	0	1	1	1	1	0	
1	1	0	1	0	0	1	1	
LO	0	1	0	1	1	0	1	

After permutation:

٢0	0	1	0	0	0	0	ן 1
1	1	1	0	1	1	1	1
1	0	1	1	1	0	1	0
0	1	1	0	1	1	1	1
0	1	0	1	1	1	0	0
0	1	0	0	0	0	0	0
0	1	1	1	1	1	1	1
1	1	1	0	0	0	1	1
1	0	1	1	1	0	0	0
0	0	0	0	0	1	1	0
1	1	1	1	0	0	0	1
1	1	0	0	1	1	1	0
0	1	1	0	0	1	1	1
1	1	1	1	1	0	1	1
1	1	0	0	0	0	1	0
11	1	0	0	1	0	0	- 1

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

TF Hill Cipher

Encryption Example Permutation: Stage 3

The permuted matrix is then converted back to decimal

33	239	186	111]
92	64	127	227
184	6	241	206
103	251	194	201

This is the final result of one iteration of the SVK Hill Cipher.

TF Hill Cipher

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Encryption Example Permutation: Stage 3

The permuted matrix is then converted back to decimal

33	239	186	111]
92	64	127	227
184	6	241	206
103	251	194	201

This is the final result of one iteration of the SVK Hill Cipher.

TF Hill Cipher

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Encryption Example Permutation: Stage 3

The permuted matrix is then converted back to decimal

33	239	186	111]
92	64	127	227
184	6	241	206
103	251	194	201

This is the final result of one iteration of the SVK Hill Cipher.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Encryption Example

The entire process is repeated an agreed upon number of times. Along with the key matrices, Alice and Bob also share a number r which dictates how many iterations of the encryption will occur.

In our case, r = 19, resulting in the ciphertext

$$C = \begin{bmatrix} 248 & 139 & 132 & 44 \\ 232 & 218 & 237 & 165 \\ 81 & 189 & 155 & 86 \\ 182 & 10 & 65 & 19 \end{bmatrix}$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

Encryption Example

The entire process is repeated an agreed upon number of times. Along with the key matrices, Alice and Bob also share a number r which dictates how many iterations of the encryption will occur. In our case, r = 19, resulting in the ciphertext

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Encryption Example

The entire process is repeated an agreed upon number of times. Along with the key matrices, Alice and Bob also share a number r which dictates how many iterations of the encryption will occur. In our case, r = 19, resulting in the ciphertext

$$C = \begin{bmatrix} 248 & 139 & 132 & 44 \\ 232 & 218 & 237 & 165 \\ 81 & 189 & 155 & 86 \\ 182 & 10 & 65 & 19 \end{bmatrix}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Encryption Example

The entire process is repeated an agreed upon number of times. Along with the key matrices, Alice and Bob also share a number r which dictates how many iterations of the encryption will occur. In our case, r = 19, resulting in the ciphertext

$$C = \begin{bmatrix} 248 & 139 & 132 & 44 \\ 232 & 218 & 237 & 165 \\ 81 & 189 & 155 & 86 \\ 182 & 10 & 65 & 19 \end{bmatrix}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Decryption Example

- When Bob receives the ciphertext, he knows *K*, *L*, and *r*.
- Bob reverses the permutation (three stages)
- He computes the product

 $K^{-1}CL^{-1} \pmod{256}$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Decryption Example

- When Bob receives the ciphertext, he knows *K*, *L*, and *r*.
- Bob reverses the permutation (three stages)
- He computes the product

 $K^{-1}CL^{-1} \pmod{256}$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Decryption Example

- When Bob receives the ciphertext, he knows *K*, *L*, and *r*.
- Bob reverses the permutation (three stages)
- He computes the product

 $K^{-1}CL^{-1} \pmod{256}$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Decryption Example

- When Bob receives the ciphertext, he knows *K*, *L*, and *r*.
- Bob reverses the permutation (three stages)
- He computes the product

 $K^{-1}CL^{-1} \pmod{256}$

Avalanche Effect

Suppose we change Alice's original message from "Abbott=A. Square" to "Abbott=A. Sqvare". Here is the binary representation of the final version of the ciphertext after 19 iterations of the encryption process:

Using the modified plaintext:

r 1	1	- 1	- 1				11
		- 1			1		1
1	- 1	- 1	- 1	1	1	- 1	
1		- 1				- 1	1
		1		- 1			1
		1					1
		- 1	- 1	- 1			
			- 1		- 1	- 1	
		1	1	- 1		1	
1		- 1	- 1		- 1	- 1	- 1
1						- 1	
1		- 1		- 1		- 1	
	- 1	- 1	- 1		- 1	- 1	
		- 1		- 1	- 1	- 1	
				- 1	- 1	- 1	- 1
1.1			- 1				

Using the original plaintext:

 $\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ \end{bmatrix}$

Avalanche Effect

Suppose we change Alice's original message from "Abbott=A. Square" to "Abbott=A. Sqvare". Here is the binary representation of the final version of the ciphertext after 19 iterations of the encryption process:

Using the modified plaintext:

r1	1	1	1	0	0	0	ן1
0	0	1	0	0	1	0	1
1	1	1	1	1	1	1	0
1	0	1	0	0	0	1	1
0	0	1	0	1	0	0	1
0	0	1	0	0	0	0	1
0	0	1	1	1	0	0	0
0	0	0	1	0	1	1	0
0	0	1	1	1	0	1	0
1	0	1	1	0	1	1	1
1	0	0	0	0	0	1	0
1	0	1	0	1	0	1	0
0	1	1	1	0	1	1	0
0	0	1	0	1	1	1	0
0	0	0	0	1	1	1	1
1	0	0	1	0	0	0	0

Using the original plaintext:

г1	1	1	1	1	0	0	٦0
1	0	0	0	1	0	1	1
1	0	0	0	0	1	0	0
0	0	1	0	1	1	0	0
1	1	1	0	1	0	0	0
1	1	0	1	1	0	1	0
1	1	1	0	1	1	0	1
1	0	1	0	0	1	0	1
0	1	0	1	0	0	0	1
1	0	1	1	1	1	0	1
1	0	0	1	1	0	1	1
0	1	0	1	0	1	1	0
1	0	1	1	0	1	1	0
0	0	0	0	1	0	1	0
0	1	0	0	0	0	0	1
Lo	0	0	1	0	0	1	1
Avalanche Effect

Suppose we change Alice's original message from "Abbott=A. Square" to "Abbott=A. Sqvare". Here is the binary representation of the final version of the ciphertext after 19 iterations of the encryption process:

Using the modified plaintext:

r1	1	1	1	0	0	0	ן1
0	0	1	0	0	1	0	1
1	1	1	1	1	1	1	0
1	0	1	0	0	0	1	1
0	0	1	0	1	0	0	1
0	0	1	0	0	0	0	1
0	0	1	1	1	0	0	0
0	0	0	1	0	1	1	0
0	0	1	1	1	0	1	0
1	0	1	1	0	1	1	1
1	0	0	0	0	0	1	0
1	0	1	0	1	0	1	0
0	1	1	1	0	1	1	0
0	0	1	0	1	1	1	0
0	0	0	0	1	1	1	1
1	0	0	1	0	0	0	0

Using the original plaintext:

г1	1	1	1	1	0	0	٦0
1	0	0	0	1	0	1	1
1	0	0	0	0	1	0	0
0	0	1	0	1	1	0	0
1	1	1	0	1	0	0	0
1	1	0	1	1	0	1	0
1	1	1	0	1	1	0	1
1	0	1	0	0	1	0	1
0	1	0	1	0	0	0	1
1	0	1	1	1	1	0	1
1	0	0	1	1	0	1	1
0	1	0	1	0	1	1	0
1	0	1	1	0	1	1	0
0	0	0	0	1	0	1	0
0	1	0	0	0	0	0	1
Lo	0	0	1	0	0	1	1

Avalanche Effect

Similarly, we can observe the avalanche effect on a slight change to one of the key matrices. Suppose we change the first row, first column entry of the key matrix K from 18 to 17. After applying the same encryption scheme for 19 iterations:

Using the modified key:

r 1		1				1	
1		- 1				1	
	1	- 1	- 1	- 1	- 1		1
		- 1				1	1
1		1	- 1		- 1	1	1
1	1		- 1	- 1	- 1		
	1	1		- 1	- 1		
1	1		1	- 1	1	1	
		1	1	- 1			1
1			- 1			- 1	- 1
	1	1	1		1	1	
1	- 1	- 1	- 1		- 1		- 1
1			- 1	- 1	- 1	- 1	
1		- 1					
				- 1	- 1	- 1	- 1
4							

Using the original key:

1	1	- 1	- 1	- 1			
1				1		- 1	1
1					1		
		- 1		1	1		
1	1	- 1		1			
1	1		1	1		- 1	
1	1	- 1		1	1		1
1		- 1			1		1
	1		- 1				- 1
1		- 1	1	1	1		- 1
1			1	1		1	- 1
	1		- 1		- 1	- 1	
1		- 1	1		1	1	
				1		1	
	1						1
			1			1	1.

Avalanche Effect

Similarly, we can observe the avalanche effect on a slight change to one of the key matrices. Suppose we change the first row, first column entry of the key matrix K from 18 to 17. After applying the same encryption scheme for 19 iterations:

Using the modified key:

1	0	1	0	0	0	1	۲0
1	0	1	0	0	0	1	0
0	1	1	1	1	1	0	1
0	0	1	0	0	0	1	1
1	0	1	1	0	1	1	1
1	1	0	1	1	1	0	0
0	1	1	0	1	1	0	0
1	1	0	1	1	1	1	0
0	0	1	1	1	0	0	1
1	0	0	1	0	0	1	1
0	1	1	1	0	1	1	0
1	1	1	1	0	1	0	1
1	0	0	1	1	1	1	0
1	0	1	0	0	0	0	0
0	0	0	0	1	1	1	1
-	0	0	0	-	-	-	- 4

Using the original key:

٢1	1	1	1	1	0	0	ך0
1	0	0	0	1	0	1	1
1	0	0	0	0	1	0	0
0	0	1	0	1	1	0	0
1	1	1	0	1	0	0	0
1	1	0	1	1	0	1	0
1	1	1	0	1	1	0	1
1	0	1	0	0	1	0	1
0	1	0	1	0	0	0	1
1	0	1	1	1	1	0	1
1	0	0	1	1	0	1	1
0	1	0	1	0	1	1	0
1	0	1	1	0	1	1	0
0	0	0	0	1	0	1	0
0	1	0	0	0	0	0	1
Lo	0	0	1	0	0	1	1

Avalanche Effect

Similarly, we can observe the avalanche effect on a slight change to one of the key matrices. Suppose we change the first row, first column entry of the key matrix K from 18 to 17. After applying the same encryption scheme for 19 iterations:

Using the modified key:

1	0	1	0	0	0	1	۲0
1	0	1	0	0	0	1	0
0	1	1	1	1	1	0	1
0	0	1	0	0	0	1	1
1	0	1	1	0	1	1	1
1	1	0	1	1	1	0	0
0	1	1	0	1	1	0	0
1	1	0	1	1	1	1	0
0	0	1	1	1	0	0	1
1	0	0	1	0	0	1	1
0	1	1	1	0	1	1	0
1	1	1	1	0	1	0	1
1	0	0	1	1	1	1	0
1	0	1	0	0	0	0	0
0	0	0	0	1	1	1	1
-	0	0	0	-	-	-	- 4

Using the original key:

٢1	1	1	1	1	0	0	ך0
1	0	0	0	1	0	1	1
1	0	0	0	0	1	0	0
0	0	1	0	1	1	0	0
1	1	1	0	1	0	0	0
1	1	0	1	1	0	1	0
1	1	1	0	1	1	0	1
1	0	1	0	0	1	0	1
0	1	0	1	0	0	0	1
1	0	1	1	1	1	0	1
1	0	0	1	1	0	1	1
0	1	0	1	0	1	1	0
1	0	1	1	0	1	1	0
0	0	0	0	1	0	1	0
0	1	0	0	0	0	0	1
Lo	0	0	1	0	0	1	1

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Summary of the SVK Hill Cipher

- Uses a pair of key matrices (multiplied on the left and right) and a permutation scheme.
- Multiple iterations.
- Secure against known-plaintext attack.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Summary of the SVK Hill Cipher

- Uses a pair of key matrices (multiplied on the left and right) and a permutation scheme.
- Multiple iterations.
- Secure against known-plaintext attack.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Summary of the SVK Hill Cipher

- Uses a pair of key matrices (multiplied on the left and right) and a permutation scheme.
- Multiple iterations.
- Secure against known-plaintext attack.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Summary of the SVK Hill Cipher

- Uses a pair of key matrices (multiplied on the left and right) and a permutation scheme.
- Multiple iterations.
- Secure against known-plaintext attack.

Toorani and Falahati (2009).

Key Features

- Variant of the Affine Hill Cipher $Y = XK + V \pmod{m}$.
- In TFHC, a new vector V is used for each plaintext block.

- Encryption rule $Y_t = v_0 X_t K + V_t \pmod{p}$
- We use a unique v_0 and V_t for each plaintext block X_t .
- For each plaintext block, a new *a*_t is recursively generated from a random initial value *a*₀ using a one-way hash function.
- Then the constant *v*₀ and vector *V*_t are generated using *a*_t and the key matrix *K*.

TF Hill Cipher

TF Hill Cipher

Toorani and Falahati (2009).

Key Features

- Variant of the Affine Hill Cipher $Y = XK + V \pmod{m}$.
- In TFHC, a new vector V is used for each plaintext block.

- Encryption rule $Y_t = v_0 X_t K + V_t \pmod{p}$
- We use a unique v_0 and V_t for each plaintext block X_t .
- For each plaintext block, a new *a*_t is recursively generated from a random initial value *a*₀ using a one-way hash function.
- Then the constant *v*₀ and vector *V*_t are generated using *a*_t and the key matrix *K*.

TF Hill Cipher

TF Hill Cipher

Toorani and Falahati (2009).

Key Features

• Variant of the Affine Hill Cipher $Y = XK + V \pmod{m}$.

• In TFHC, a new vector V is used for each plaintext block.

- Encryption rule $Y_t = v_0 X_t K + V_t \pmod{p}$
- We use a unique v_0 and V_t for each plaintext block X_t .
- For each plaintext block, a new *a*_t is recursively generated from a random initial value *a*₀ using a one-way hash function.
- Then the constant v₀ and vector V_t are generated using a_t and the key matrix K.

TF Hill Cipher

TF Hill Cipher

Toorani and Falahati (2009).

Key Features

- Variant of the Affine Hill Cipher $Y = XK + V \pmod{m}$.
- In TFHC, a new vector V is used for each plaintext block.

- Encryption rule $Y_t = v_0 X_t K + V_t \pmod{p}$
- We use a unique v_0 and V_t for each plaintext block X_t .
- For each plaintext block, a new *a*_t is recursively generated from a random initial value *a*₀ using a one-way hash function.
- Then the constant *v*₀ and vector *V*_t are generated using *a*_t and the key matrix *K*.

TF Hill Cipher

TF Hill Cipher

Toorani and Falahati (2009).

Key Features

- Variant of the Affine Hill Cipher $Y = XK + V \pmod{m}$.
- In TFHC, a new vector V is used for each plaintext block.

- Encryption rule $Y_t = v_0 X_t K + V_t \pmod{p}$
- We use a unique v_0 and V_t for each plaintext block X_t .
- For each plaintext block, a new *a_t* is recursively generated from a random initial value *a*₀ using a one-way hash function.
- Then the constant v₀ and vector V_t are generated using a_t and the key matrix K.

TF Hill Cipher

TF Hill Cipher

Toorani and Falahati (2009).

Key Features

- Variant of the Affine Hill Cipher $Y = XK + V \pmod{m}$.
- In TFHC, a new vector V is used for each plaintext block.

- Encryption rule $Y_t = v_0 X_t K + V_t \pmod{p}$
- We use a unique v_0 and V_t for each plaintext block X_t .
- For each plaintext block, a new *a_t* is recursively generated from a random initial value *a*₀ using a one-way hash function.
- Then the constant v₀ and vector V_t are generated using a_t and the key matrix K.

TF Hill Cipher

TF Hill Cipher

Toorani and Falahati (2009).

Key Features

- Variant of the Affine Hill Cipher $Y = XK + V \pmod{m}$.
- In TFHC, a new vector V is used for each plaintext block.

- Encryption rule $Y_t = v_0 X_t K + V_t \pmod{p}$
- We use a unique v_0 and V_t for each plaintext block X_t .
- For each plaintext block, a new *a_t* is recursively generated from a random initial value *a*₀ using a one-way hash function.
- Then the constant v₀ and vector V_t are generated using a_t and the key matrix K.

TF Hill Cipher

TF Hill Cipher

Toorani and Falahati (2009).

Key Features

- Variant of the Affine Hill Cipher $Y = XK + V \pmod{m}$.
- In TFHC, a new vector V is used for each plaintext block.

- Encryption rule $Y_t = v_0 X_t K + V_t \pmod{p}$
- We use a unique v_0 and V_t for each plaintext block X_t .
- For each plaintext block, a new *a*_t is recursively generated from a random initial value *a*₀ using a one-way hash function.
- Then the constant v₀ and vector V_t are generated using a_t and the key matrix K.

TF Hill Cipher

TF Hill Cipher

Toorani and Falahati (2009).

Key Features

- Variant of the Affine Hill Cipher $Y = XK + V \pmod{m}$.
- In TFHC, a new vector V is used for each plaintext block.

- Encryption rule $Y_t = v_0 X_t K + V_t \pmod{p}$
- We use a unique v_0 and V_t for each plaintext block X_t .
- For each plaintext block, a new *a*_t is recursively generated from a random initial value *a*₀ using a one-way hash function.
- Then the constant v₀ and vector V_t are generated using a_t and the key matrix K.

TF Hill Cipher o●ooooooooo Summary

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Encryption example

Suppose our plaintext is "over the hill and through the woods". We might encode it using the following alphabet with p = 29:

а	b		d	е	f	g	h	i	j	k		m
	- 1	2		4	5	6	7		9	10	11	12

n		р	q	r		t	U	V	W	Х	У	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

[space]	' [apostrophe]	. [period]	
26	27	28	

Our encoded plaintext would be

[14 21 4 17 26 19 7 4 26 7 8 11 11 26 0 13 3 26 19 7 17 14 20 6 7 26 19 7 4 26 22 14 14 3 18]

TF Hill Cipher o●ooooooooo Summary

Encryption example

Suppose our plaintext is "over the hill and through the woods". We might encode it using the following alphabet with p = 29:

а	b	С	d	е	f	g	h	i	j	k	I	m
0	1	2	3	4	5	6	7	8	9	10	11	12

n	0	р	q	r	S	t	u	v	W	Х	у	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

[space]	' [apostrophe]	. [period]	
26	27	28	

Our encoded plaintext would be

[14 21 4 17 26 19 7 4 26 7 8 11 11 26 0 13 3 26 19 7 17 14 20 6 7 26 19 7 4 26 22 14 14 3 18]

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへで

TF Hill Cipher o●ooooooooo Summary

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Encryption example

Suppose our plaintext is "over the hill and through the woods". We might encode it using the following alphabet with p = 29:

а	b	С	d	е	f	g	h	i	j	k	I	m
0	1	2	3	4	5	6	7	8	9	10	11	12

n	0	р	q	r	S	t	u	v	w	Х	у	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

[space]	' [apostrophe]	. [period]	
26	27	28	

Our encoded plaintext would be

[14 21 4 17 26 19 7 4 26 7 8 11 11 26 0 13 3 26 19 7 17 14 20 6 7 26 19 7 4 26 22 14 14 3 18]

TF Hill Cipher oo●oooooooo

Encryption example

Suppose we choose a block size of n = 5.

Let the key matrix be

$$K = \begin{bmatrix} 1 & 5 & 17 & 25 & 16 \\ 9 & 0 & 18 & 19 & 23 \\ 26 & 4 & 10 & 13 & 2 \\ 3 & 4 & 8 & 9 & 22 \\ 7 & 24 & 15 & 17 & 12 \end{bmatrix}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

TF Hill Cipher oo●oooooooo

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Encryption example

Suppose we choose a block size of n = 5.

Let the key matrix be

$$K = \begin{bmatrix} 1 & 5 & 17 & 25 & 16 \\ 9 & 0 & 18 & 19 & 23 \\ 26 & 4 & 10 & 13 & 2 \\ 3 & 4 & 8 & 9 & 22 \\ 7 & 24 & 15 & 17 & 12 \end{bmatrix}$$

TF Hill Cipher

Encryption example

Step ⁻

We choose a random a_0 and b such that $0 < a_0 < p - 1$ and $1 < b < n^2$. We choose

 $a_0 = 20$

b = 17

since $0 < a_0 < 28$, and since 1 < b < 25.

Step 2

Next we compute $r = a_0 k_{ij} \pmod{p}$ where $i = \lceil b/n \rceil$ and j = b - n(i - 1). We find r - 22

TF Hill Cipher

Summary

Encryption example

Step 1

We choose a random a_0 and b such that $0 < a_0 < p - 1$ and $1 < b < n^2$. We choose

$$a_0 = 20$$

since $0 < a_0 < 28$, and since 1 < b < 25.

Step 2

Next we compute $r = a_0 k_{ij} \pmod{p}$ where $i = \lceil b/n \rceil$ and j = b - n(i - 1). We find r - 22

・ロト・日本・日本・日本・日本・日本

TF Hill Cipher

Summary

Encryption example

Step 1

We choose a random a_0 and b such that $0 < a_0 < p - 1$ and $1 < b < n^2$. We choose

 $a_0 = 20$

b = 17

since $0 < a_0 < 28$, and since 1 < b < 25.

Step 2

Next we compute $r = a_0 k_{ij} \pmod{p}$ where $i = \lceil b/n \rceil$ and j = b - n(i - 1). We find r = 22

・ロト・日本・日本・日本・日本・日本

TF Hill Cipher

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Encryption example

Step 3

We encode the plaintext into row vectors X_t of length n = 5

 $X_{1} = [14 \ 21 \ 4 \ 17 \ 26]$ $X_{2} = [19 \ 7 \ 4 \ 26 \ 7]$ $X_{3} = [8 \ 11 \ 11 \ 26 \ 0]$ $X_{4} = [13 \ 3 \ 26 \ 19 \ 7]$ $X_{5} = [17 \ 14 \ 20 \ 6 \ 7]$ $X_{6} = [26 \ 19 \ 7 \ 4 \ 26]$ $X_{7} = [22 \ 14 \ 14 \ 3 \ 18]$

TF Hill Cipher

Summary

Encryption example

Step 3

We encode the plaintext into row vectors X_t of length n = 5

$$\begin{array}{l} X_1 = [14 \ 21 \ 4 \ 17 \ 26] \\ X_2 = [19 \ 7 \ 4 \ 26 \ 7] \\ X_3 = [8 \ 11 \ 11 \ 26 \ 0] \\ X_4 = [13 \ 3 \ 26 \ 19 \ 7] \\ X_5 = [17 \ 14 \ 20 \ 6 \ 7] \\ X_6 = [26 \ 19 \ 7 \ 4 \ 26] \\ X_7 = [22 \ 14 \ 14 \ 3 \ 18] \end{array}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Encryption example

Step 4

For each plaintext block X_t , we compute $a_t = H(a_{t-1})$ using a recursive one-way hash function H. In our case, we will use the MD5 hash function. For example, to encrypt the first plaintext block X_1 , we calculate $a_1 = H(a_0)$, obtaining

 $a_1 = H(20) = 203295115078782523880027993804846545796$

Step 5

We then compute v_0 : If a_t is invertible mod p, that is $a_t \neq 0 \pmod{p}$, we let $v_0 = a_t \pmod{p}$. Otherwise $v_0 = 1$. In our case

 $v_0 = a_1 \pmod{29} = 7$

Encryption example

Step 4

For each plaintext block X_t , we compute $a_t = H(a_{t-1})$ using a recursive one-way hash function H. In our case, we will use the MD5 hash function. For example, to encrypt the first plaintext block X_1 , we calculate $a_1 = H(a_0)$, obtaining

 $a_1 = H(20) = 203295115078782523880027993804846545796$

Step 5

We then compute v_0 : If a_t is invertible mod p, that is $a_t \neq 0 \pmod{p}$, we let $v_0 = a_t \pmod{p}$. Otherwise $v_0 = 1$. In our case

 $v_0 = a_1 \pmod{29} = 7$

・ロト・西下・日下・日下・日下

Encryption example

Step 4

For each plaintext block X_t , we compute $a_t = H(a_{t-1})$ using a recursive one-way hash function H. In our case, we will use the MD5 hash function. For example, to encrypt the first plaintext block X_1 , we calculate $a_1 = H(a_0)$, obtaining

 $a_1 = H(20) = 203295115078782523880027993804846545796$

Step 5

We then compute v_0 : If a_t is invertible mod p, that is $a_t \neq 0 \pmod{p}$, we let $v_0 = a_t \pmod{p}$. Otherwise $v_0 = 1$. In our case

 $v_0 = a_1 \pmod{29} = 7$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Encryption example

Step 6

We then compute row vector $V_t = [v_1 \ v_2 \ \cdots \ v_n]$ with the recursive expression $v_i = k_{ij} + \tilde{v}_{i-1}a_t \pmod{p}$ for $i = 1, \dots, n$ and $j = (v_{i-1} \mod n) + 1$, in which $\tilde{v}_{i-1} = 2^{\lceil \gamma/2 \rceil} + (v_{i-1} \mod 2^{\lceil \gamma/2 \rceil})$ and $\gamma = \lfloor \log_2 v_{i-1} \rfloor + 1$ denotes the bit length of v_{i-1} . In our case,

$$i = 1 \quad j = 3 \quad \gamma = 3 \quad \tilde{v}_0 = 7 \quad v_1 = 8$$

$$i = 2 \quad j = 4 \quad \gamma = 4 \quad \tilde{v}_1 = 4 \quad v_2 = 18$$

$$i = 3 \quad j = 4 \quad \gamma = 5 \quad \tilde{v}_2 = 10 \quad v_3 = 25$$

$$i = 4 \quad j = 1 \quad \gamma = 5 \quad \tilde{v}_3 = 9 \quad v_4 = 8$$

$$i = 5 \quad j = 4 \quad \gamma = 4 \quad \tilde{v}_4 = 4 \quad v_5 = 16$$

So $V_1 = [8 \ 18 \ 25 \ 8 \ 16]$.

TF Hill Cipher

Encryption example

Step 6

We then compute row vector $V_t = [v_1 \ v_2 \ \cdots \ v_n]$ with the recursive expression $v_i = k_{ij} + \tilde{v}_{i-1}a_t \pmod{p}$ for $i = 1, \dots, n$ and $j = (v_{i-1} \mod n) + 1$, in which $\tilde{v}_{i-1} = 2^{\lceil \gamma/2 \rceil} + (v_{i-1} \mod 2^{\lceil \gamma/2 \rceil})$ and $\gamma = \lfloor \log_2 v_{i-1} \rfloor + 1$ denotes the bit length of v_{i-1} . In our case,

So $V_1 = [8 \ 18 \ 25 \ 8 \ 16]$.

TF Hill Cipher

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Encryption example

Step 6

We then compute row vector $V_t = [v_1 \ v_2 \ \cdots \ v_n]$ with the recursive expression $v_i = k_{ij} + \tilde{v}_{i-1} a_t \pmod{p}$ for $i = 1, \dots, n$ and $j = (v_{i-1} \mod n) + 1$, in which $\tilde{v}_{i-1} = 2^{\lceil \gamma/2 \rceil} + (v_{i-1} \mod 2^{\lceil \gamma/2 \rceil})$ and $\gamma = \lfloor \log_2 v_{i-1} \rfloor + 1$ denotes the bit length of v_{i-1} . In our case,

$$i = 1 \quad j = 3 \quad \gamma = 3 \quad \tilde{v}_0 = 7 \quad v_1 = 8$$

$$i = 2 \quad j = 4 \quad \gamma = 4 \quad \tilde{v}_1 = 4 \quad v_2 = 18$$

$$i = 3 \quad j = 4 \quad \gamma = 5 \quad \tilde{v}_2 = 10 \quad v_3 = 25$$

$$i = 4 \quad j = 1 \quad \gamma = 5 \quad \tilde{v}_3 = 9 \quad v_4 = 8$$

$$i = 5 \quad j = 4 \quad \gamma = 4 \quad \tilde{v}_4 = 4 \quad v_5 = 16$$

So $V_1 = [8 \ 18 \ 25 \ 8 \ 16]$.

TF Hill Cipher

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Encryption example

Step 6

We then compute row vector $V_t = [v_1 \ v_2 \ \cdots \ v_n]$ with the recursive expression $v_i = k_{ij} + \tilde{v}_{i-1}a_t \pmod{p}$ for $i = 1, \dots, n$ and $j = (v_{i-1} \mod n) + 1$, in which $\tilde{v}_{i-1} = 2^{\lceil \gamma/2 \rceil} + (v_{i-1} \mod 2^{\lceil \gamma/2 \rceil})$ and $\gamma = \lfloor \log_2 v_{i-1} \rfloor + 1$ denotes the bit length of v_{i-1} . In our case,

$$i = 1 \quad j = 3 \quad \gamma = 3 \quad \tilde{v}_0 = 7 \quad v_1 = 8$$

$$i = 2 \quad j = 4 \quad \gamma = 4 \quad \tilde{v}_1 = 4 \quad v_2 = 18$$

$$i = 3 \quad j = 4 \quad \gamma = 5 \quad \tilde{v}_2 = 10 \quad v_3 = 25$$

$$i = 4 \quad j = 1 \quad \gamma = 5 \quad \tilde{v}_3 = 9 \quad v_4 = 8$$

$$i = 5 \quad j = 4 \quad \gamma = 4 \quad \tilde{v}_4 = 4 \quad v_5 = 16$$

So *V*₁ = [8 18 25 8 16].

TF Hill Cipher

Encryption example

Step 7

We encrypt each X_t , as $Y_t = v_0 X_t K + V_t \pmod{p}$. In the case of X_1 , we have

 $Y_1 = (7) [14 \ 21 \ 4 \ 17 \ 26] K + V_1 \pmod{p} = [18 \ 12 \ 5 \ 7 \ 21]$

TF Hill Cipher

Encryption example

Step 7

We encrypt each X_t , as $Y_t = v_0 X_t K + V_t \pmod{p}$. In the case of X_1 , we have

 $Y_1 = (7) [14 \ 21 \ 4 \ 17 \ 26] K + V_1 \pmod{p} = [18 \ 12 \ 5 \ 7 \ 21]$

TF Hill Cipher

ヘロン 人間 とくほ とくほ とう

3

Encryption example

Step 8

We repeat this for all the other plaintext blocks, yielding:

 $Y_{1} = [18 \ 12 \ 5 \ 7 \ 21]$ $Y_{2} = [18 \ 22 \ 14 \ 5 \ 21]$ $Y_{3} = [23 \ 24 \ 13 \ 14 \ 8]$ $Y_{4} = [20 \ 9 \ 1 \ 2 \ 4]$ $Y_{5} = [10 \ 18 \ 26 \ 1 \ 26]$ $Y_{6} = [5 \ 18 \ 8 \ 3 \ 24]$ $Y_{7} = [4 \ 5 \ 0 \ 12 \ 0]$

TF Hill Cipher

くロ とく得 とくほ とくほと

э

Encryption example

Step 8

We repeat this for all the other plaintext blocks, yielding:

 $Y_{1} = [18 \ 12 \ 5 \ 7 \ 21]$ $Y_{2} = [18 \ 22 \ 14 \ 5 \ 21]$ $Y_{3} = [23 \ 24 \ 13 \ 14 \ 8]$ $Y_{4} = [20 \ 9 \ 1 \ 2 \ 4]$ $Y_{5} = [10 \ 18 \ 26 \ 1 \ 26]$ $Y_{6} = [5 \ 18 \ 8 \ 3 \ 24]$ $Y_{7} = [4 \ 5 \ 0 \ 12 \ 0]$

TF Hill Cipher

ヘロマ ヘビマ ヘヨマ

э

Encryption example

Step 8

We repeat this for all the other plaintext blocks, yielding:

 $\begin{array}{l} Y_1 = [18 \ 12 \ 5 \ 7 \ 21] \\ Y_2 = [18 \ 22 \ 14 \ 5 \ 21] \\ Y_3 = [23 \ 24 \ 13 \ 14 \ 8] \\ Y_4 = [20 \ 9 \ 1 \ 2 \ 4] \\ Y_5 = [10 \ 18 \ 26 \ 1 \ 26] \\ Y_6 = [5 \ 18 \ 8 \ 3 \ 24] \\ Y_7 = [4 \ 5 \ 0 \ 12 \ 0] \end{array}$

TF Hill Cipher

ヘロマ ヘビマ ヘヨマ

э

Encryption example

Step 8

We repeat this for all the other plaintext blocks, yielding:

 $Y_1 = [18 \ 12 \ 5 \ 7 \ 21]$ $Y_2 = [18 \ 22 \ 14 \ 5 \ 21]$ $Y_3 = [23 \ 24 \ 13 \ 14 \ 8]$ $Y_4 = [20 \ 9 \ 1 \ 2 \ 4]$ $Y_5 = [10 \ 18 \ 26 \ 1 \ 26]$ $Y_6 = [5 \ 18 \ 8 \ 3 \ 24]$ $Y_7 = [4 \ 5 \ 0 \ 12 \ 0]$

(日) (日) (日) (日) (日) (日) (日)

Decryption example

- Bob knows the secret key K. He receives the ciphertext blocks Y_t sent by Alice, b = 17, and r = 22 over public channel.
- e He computes $u = k_{ij}^{-1} \pmod{p}$ and $a_0 = ru \pmod{p}$ in which $i = \lceil b/n \rceil$ and j = b n(i 1) and finds

$$a_0 = 20$$

- Since he now has $a_0 = 20$, he computes V_t for each ciphertext block just as Alice did.
- ⁽³⁾ He then decrypts each ciphertext block by $X_t = v_0^{-1} (Y_t V_t) K^{-1} \pmod{p}$, obtaining all the plaintext matrices.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Decryption example

- Bob knows the secret key K. He receives the ciphertext blocks Y_t sent by Alice, b = 17, and r = 22 over public channel.
- Provide the computes $u = k_{ij}^{-1} \pmod{p}$ and $a_0 = ru \pmod{p}$ in which $i = \lceil b/n \rceil$ and j = b n(i 1) and finds

$a_0 = 20$

- 3 Since he now has $a_0 = 20$, he computes V_t for each ciphertext block just as Alice did.
- He then decrypts each ciphertext block by $X_t = v_0^{-1} (Y_t - V_t) K^{-1} \pmod{p}$, obtaining all the plaintext matrices.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Decryption example

- Bob knows the secret key K. He receives the ciphertext blocks Y_t sent by Alice, b = 17, and r = 22 over public channel.
- Provide the computes $u = k_{ij}^{-1} \pmod{p}$ and $a_0 = ru \pmod{p}$ in which $i = \lceil b/n \rceil$ and j = b n(i 1) and finds

$$a_0 = 20$$

- Since he now has $a_0 = 20$, he computes V_t for each ciphertext block just as Alice did.
- He then decrypts each ciphertext block by $X_t = v_0^{-1} (Y_t V_t) K^{-1} \pmod{p}$, obtaining all the plaintext matrices.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Decryption example

- Bob knows the secret key K. He receives the ciphertext blocks Y_t sent by Alice, b = 17, and r = 22 over public channel.
- Provide the computes $u = k_{ij}^{-1} \pmod{p}$ and $a_0 = ru \pmod{p}$ in which $i = \lceil b/n \rceil$ and j = b n(i 1) and finds

$$a_0 = 20$$

- Since he now has $a_0 = 20$, he computes V_t for each ciphertext block just as Alice did.
- He then decrypts each ciphertext block by $X_t = v_0^{-1} (Y_t V_t) K^{-1} \pmod{p}$, obtaining all the plaintext matrices.

TF Hill Cipher

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Summary of Hill Cipher

- Variant on the Affine Hill Cipher.
- A new vector V is generated by a secure hash for each block of plaintext.
- Secure against the known-plaintext attack.

TF Hill Cipher

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Summary of Hill Cipher

- Variant on the Affine Hill Cipher.
- A new vector V is generated by a secure hash for each block of plaintext.
- Secure against the known-plaintext attack.

TF Hill Cipher

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Summary of Hill Cipher

- Variant on the Affine Hill Cipher.
- A new vector V is generated by a secure hash for each block of plaintext.
- Secure against the known-plaintext attack.

TF Hill Cipher

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Summary of Hill Cipher

- Variant on the Affine Hill Cipher.
- A new vector V is generated by a secure hash for each block of plaintext.
- Secure against the known-plaintext attack.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- The classic Hill Cipher is insecure, subject to known-plaintext attack.
- We have presented two secure variants on Hill's cipher:
 - Sastry, Varanasi, and Kumar (2010)
 Toorani and Falahati (2009)
- In both cases, the Hill Cipher has been made secure against the known-plaintext attack.
- These two strong symmetric ciphers are ready for use in the real world.

Summary

- The classic Hill Cipher is insecure, subject to known-plaintext attack.
- We have presented two secure variants on Hill's cipher:
 - Sastry, Varanasi, and Kumar (2010)
 - Toorani and Falahati (2009)
- In both cases, the Hill Cipher has been made secure against the known-plaintext attack.
- These two strong symmetric ciphers are ready for use in the real world.

・ロト・西ト・ヨト・ヨー うへぐ

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- The classic Hill Cipher is insecure, subject to known-plaintext attack.
- We have presented two secure variants on Hill's cipher:
 - Sastry, Varanasi, and Kumar (2010)
 - Toorani and Falahati (2009)
- In both cases, the Hill Cipher has been made secure against the known-plaintext attack.
- These two strong symmetric ciphers are ready for use in the real world.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

- The classic Hill Cipher is insecure, subject to known-plaintext attack.
- We have presented two secure variants on Hill's cipher:
 - Sastry, Varanasi, and Kumar (2010)
 - Toorani and Falahati (2009)
- In both cases, the Hill Cipher has been made secure against the known-plaintext attack.
- These two strong symmetric ciphers are ready for use in the real world.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- The classic Hill Cipher is insecure, subject to known-plaintext attack.
- We have presented two secure variants on Hill's cipher:
 - Sastry, Varanasi, and Kumar (2010)
 - Toorani and Falahati (2009)
- In both cases, the Hill Cipher has been made secure against the known-plaintext attack.
- These two strong symmetric ciphers are ready for use in the real world.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- The classic Hill Cipher is insecure, subject to known-plaintext attack.
- We have presented two secure variants on Hill's cipher:
 - Sastry, Varanasi, and Kumar (2010)
 - Toorani and Falahati (2009)
- In both cases, the Hill Cipher has been made secure against the known-plaintext attack.
- These two strong symmetric ciphers are ready for use in the real world.